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Abstract. Extreme rainfall events frequently cause haz-
ardous floods in many parts of the world. With growing
human exposure to floods, studying conditions that trigger
floods is imperative. Flash floods, in particular, require well-
defined models for the timely warning of the population at
risk. Intensity–duration–frequency (IDF) curves are a com-
mon way to characterize rainfall and flood events. Here, the
copula method is employed to model the dependence be-
tween the intensity and duration of rainfall events flexibly
and separately from their respective marginal distribution. In-
formation about the localization of 93 flash floods in Jamaica
was gathered and linked to remote-sensing rainfall data, and
additional data on location-specific yearly maximum rainfall
events were constructed. The estimated normal copula has
Weibull and generalized extreme value (GEV) marginals for
duration and intensity, respectively. Due to the two samples,
it is possible to pin down above which line in the intensity
duration space a rainfall event likely triggers a flash flood.
The parametric IDF curve with an associated return period
of 2 1

6 years is determined as the optimal threshold for flash
flood event classification. This methodology delivers a flex-
ible approach to generating rainfall IDF curves that can di-
rectly be used to assess flash flood risk.

1 Introduction

Over the last 20 years, more people have been affected
by floods than by any other natural disaster.1 Among plu-
vial floods, flash floods have the highest average mortality
(Jonkman, 2005; Hu et al., 2018). The Caribbean is espe-
cially at risk from flash floods. The region is particularly
prone to hydro-meteorological hazards, urbanization is of-
ten unregulated, and soil degradation is common such that
flash floods are frequent (Gencer, 2013; Pinos and Quesada-
Román, 2021). For instance, heavy rain on 5 March 2022
in northern Hispaniola caused severe flash floods, leading
to two deaths and hundreds being displaced.2 Flash floods
follow shortly after heavy rainfall and are highly localized
phenomena that occur in basins of no more than a few hun-
dred square kilometers and have a response time of a few
hours (Amponsah et al., 2018). Steep slopes, impermeable
surfaces, and saturated soils are factors that can transform
a heavy rainfall event into a flash flood hazard (Silvestro
et al., 2019). The high localization and multidimensional-
ity involved in flash floods make their study particularly in-
volved.

It has long been a primary objective of weather service
providers to create a warning system that connects rain-
fall to floods and landslides (Alfieri et al., 2012). Warn-
ing systems typically use some lower bound or threshold

1The authors’ calculation is performed using the EM-DAT
database. Since 2000, 1.7 billion people have been affected by
floods, followed by droughts (1.4 billion), storms (0.8 billion), and
earthquakes (0.12 billion).

2https://floodlist.com/, last access: 11 January 2023.
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above which a warning would be issued (Hapuarachchi et al.,
2011). Empirical thresholds for when rainfall events become
hazardous connect the intensity (I ) to the duration (D) and
are used for the construction of so-called intensity–duration–
frequency (IDF) curves (Koutsoyiannis et al., 1998). Com-
monly, estimation of IDF curves requires assumptions on the
marginal distribution of I and D or the two marginals were
assumed to be independent.3 Using copula functions for con-
ditional sampling allows the flexible and separate definition
of marginals and dependence. Multiple studies employ the
said method to estimate rainfall IDF curves for landslides and
heavy rainfall events (Singh and Zhang, 2007; Ariff et al.,
2012; Bezak et al., 2016; Li et al., 2019; Suresh and Pekkat,
2023). These studies often define the yearly maximum event
of measurement stations by some decision rule and model the
resulting time series. This allows for a good statistical fit and
a well-described dependence between I and D. However,
since the data do not necessarily contain hazardous events,
little inference can be made about these.

The calculation of rainfall IDF curves is strongly rooted
in extreme value theory (EVT) since the intensity and du-
ration of extreme events lend themselves as a relevant ap-
plication (Koutsoyiannis et al., 1998). It is a common ap-
proach to flexibly derive IDF curves that can accommodate
non-linearity in their parameters, e.g., to depict climatic time
trends (Hosseinzadehtalaei et al., 2020; Sam et al., 2023).
More recently, the use of copula functions to extend univari-
ate EVT to multivariate extreme value theory (MVET) has
been suggested as a complement to existing approaches, in-
cluding IDF curves (Renard and Lang, 2007; Salvadori and
De Michele, 2010; Chen and Guo, 2019). The main differ-
ence between the two approaches is the focus of analysis.
Taking a multivariate perspective with copula functions, one
focuses on the potentially non-linear dependence between in-
tensity and duration (Bezak et al., 2016). In contrast, the uni-
variate EVT approach typically focuses on univariate charac-
teristics such as non-stationarity in distributional components
(Martel et al., 2021). In principle, a multivariate approach
with copula functions could also incorporate non-stationarity
in an appropriate methodology. However, such a procedure
becomes increasingly complex and requires sufficient data
(Li et al., 2019).

This study aims to construct IDF curves with information
from confirmed flash flood events in Jamaica. This allows for
inference with regard to the hazard by comparing the odds
ratio of flood occurrence given a frequency, where less fre-
quent events are more severe and vice versa. The calculation
of the odds ratio requires a set of extreme but non-hazardous
events as well as a set of hazardous rainfall events. Follow-
ing the literature, the local yearly maximum rainfall events
are defined. Additionally, a complete and confirmed list of

3There are also some instances where a specific dependence has
been assumed from theoretical considerations; see Koutsoyiannis
et al. (1998)

Jamaican flash floods by the Office of Disaster and Prepared-
ness Management (ODPEM) is utilized to define hazardous
events. These observed flash flood events are linked with
11 km× 11 km cells of remote-sensing rainfall information.
These remotely sensed data have several advantages com-
pared to station data, such as consistency in sensors and res-
olution. While direct in situ measurements are factual, they
depend on the location and continuous operation of stations.
Currently, the number of modern automatic weather stations
in Jamaica is well below the remote-sensing resolution, with
the exception of the area around the capital Kingston.4 Sub-
sequently, the IDF curve threshold, which separates the con-
firmed hazard events from the rest via the odds ratio, is de-
termined. This threshold can serve as a simple decision rule
for the identification of flash-flood-triggering rainfall events.

There are a number of reasons why the Caribbean and Ja-
maica in particular are an interesting case study. Small island
states in the Caribbean have long been identified as especially
vulnerable to extreme meteorological events and associated
flooding (IPCC, 2012; Wilson et al., 2014). Moreover, ex-
treme precipitation events have shown an increase since 1950
in the Caribbean region (Peterson et al., 2002; Stephenson
et al., 2014). At the same time, there is little information on
the local rainfall risk. In this regard, it is common practice
to transfer IDF curves for some Caribbean island nations to
others, despite their different rainfall characteristics (Lum-
broso et al., 2011). Burgess et al. (2015) therefore developed
IDF curves for Jamaica with long historical data. Linearly
projecting the historical parameter estimates to 2100, they
find that the intensity of a 100-year return event increases
by 27 % to 59 % as a result of increasing variability due to
climate change.

Quantifying extreme rainfall-induced hazards has impor-
tant applications, such as for risk maps, warning systems,
or re-insurance schemes, particularly for the Caribbean.
For example, the Climate Risk and Early Warning Sys-
tems (CREWS) aims to strengthen hydro-meteorological and
early warning services in the Caribbean, focusing on hurri-
canes and other hydro-meteorological hazards. Its first as-
sessment in 2015 identified the need for increased fore-
casting of secondary hazards such as coastal flooding and
flash floods. Currently, pilot projects to strengthen na-
tional multi-hazard early warning systems in the Caribbean
community countries are devised through CREWS. The
Caribbean Risk Information System (CRIS) platform, cre-
ated by the Caribbean Disaster Emergency Management
Agency (CDEMA), aims to support informed decision-
making by providing access to information on hazards and
does so via geospatial data for risk and hazard mapping,
disaster preparedness, and response operations. These input
data rely on research in the hazard, exposure, and vulnerabil-

4http://metservice.gov.jm/aws/, last access 3 January 2023.
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Figure 1. Maps of the (bilinearly interpolated) rainfall climate in Jamaica from the precipitation data as used in this study. Panel (a) shows
the average yearly precipitation, panel (b) the average precipitation of events with a 72 h inter-event time definition (IETD), panel (c) the
average precipitation of events with a 24 h IETD, and panel (d) the average precipitation of events with a 6 h IETD.

ity domain.5 Another example is the Caribbean Catastrophe
Risk Insurance Facility (CCRIF), which since 2013 has pro-
vided insurance against excess rainfall to member countries
(Linkin, 2014). More specifically, its CCRIF Excess Rainfall
(XSR) product is a parametric insurance based on specific
rainfall thresholds that determine payouts.

The remainder of the paper is organized as follows: Sect. 2
presents the study region and describes the data. Section 3
details the methodology of conditional copula modeling and
how the two samples are used to determine an IDF-curve-
based flash flood threshold. Section 4 then presents the re-
sults. Section 5 discusses the findings, and Sect. 6 concludes.

2 Study region and data

2.1 Study region

Jamaica is the third-largest Caribbean island by land area af-
ter Cuba and Hispaniola. The island’s topography is char-
acterized by interior mountain ranges descending to coastal
plains where the eastern Blue Mountains historically experi-
ence the most rainfall (Climate Studies Group Mona, 2020).
Jamaica lies in the Atlantic hurricane belt and is especially
at risk of climate change (Monioudi et al., 2018). Tropical

5Most commonly, risk is defined as the combination of the three
components hazard, exposure, and vulnerability. Hazard relates to
the physical phenomenon – in this case, flash floods. Exposure
could be in terms of people, buildings, or economic assets at risk
of the hazard. Vulnerability then links the hazard to the exposure
and translates it to risk. For instance, given a flash flood hazard,
the vulnerability of urban or agricultural settlements (exposure) is
different, and as such, the risk is different as well.

cyclones and the accompanying heavy rainfall are frequent
and cause severe destruction (Spencer and Polachek, 2015;
Collalti and Strobl, 2022). For instance, between June 2007
and August 2021, the CCRIF made 54 payouts for a to-
tal of USD 245 million, of which USD 135 million are for
tropical cyclones, USD 60 million for excess rainfall, and
USD 49 million for earthquakes (mainly the devastating 2021
Haiti earthquake). Thus, local susceptibility to floods has be-
come vital to planning and development in Jamaica (Nandi
et al., 2016).

2.2 Rainfall climate

The annual cycle of rainfall for Jamaica reflects a bimodal
pattern with rainfall peaks in May and October typical for
the northwestern Caribbean (Martinez et al., 2019). This pat-
tern is a result of the interplay between the large-scale cli-
matic modulators of the region, namely the North Atlantic
high-pressure system (Azores High), the seasonal warming
of the Atlantic, and the Atlantic trade winds (Climate Studies
Group Mona, 2020). That is, the north-to-south movement
of the North Atlantic High in boreal autumn (south-to-north
movement in spring) and the Atlantic cooling in autumn
(warming in spring), coupled with the trade wind inversion
in boreal winter, cause boreal winter (and to a lesser degree
summer) to be dry. Looking at the spatial rainfall distribution
over Jamaica in Fig. 1, one sees that the spatial distribution
of rainfall depends on the weather system at different tem-
poral scales. On average, during the study period from 2000
to 2019, most precipitation falls in the central northwestern
area of the island and, to a lesser degree, on the northeast-
ern shore close to the Blue Mountains. Comparing this to the
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average total precipitation of events with a 6, 24, and 72 h
inter-event time definition (IETD), we can conclude that the
western part of the island is subject to the most heavy rainfall
events with long durations, whereas the eastern part experi-
ences the heaviest short duration events.

2.3 Flash floods

The source of flash flood information is the Office of Dis-
aster and Preparedness Management (ODPEM), whose re-
sponsibility includes monitoring extreme weather events in
Jamaica and implementing measures to mitigate their impact.
From the ODPEM, shapefiles of all 48 known flood events
are obtained from 2001 to 2018. Many of these events corre-
spond to a specific meteorological event, like a tropical storm
that caused flooding in more than one location in Jamaica.
We treat each event location separately if it falls uniquely
in a remote-sensing rainfall cell. For example, during heavy
rain on 14–15 May in 2017, several places around Cave Val-
ley (parish of St. Ann) in central Jamaica, as well as to the
south around Morgans Pass in the parish of Clarendon, expe-
rienced severe flooding. These locations are approximately
20 km apart, lie on two sides of the north/south watershed,
and are thus treated as two incidents in their respective rain-
fall cell. Some flood events in the ODPEM shapefiles could
not be verified by any report and were therefore dropped, as
were a few riverine floods that would require explicit hydro-
logical modeling, which is beyond the scope of this study.
Some events where the exact day (days) is (are) not included
in the data are identified using local newspaper reports. A to-
tal of 93 flash flood events were localized for Jamaica with
approximate timing.

2.4 Precipitation

The source for precipitation data is version 06B of the
Global Precipitation Measurement (GPM) Integrated Multi-
satellitE Retrievals (IMERG, Huffman et al., 2023). The
satellite precipitation algorithm combines microwave and in-
frared precipitation measurements to produce precipitation
estimates, adjusted with surface gauge data. The resulting
product is a half-hourly data set with near-global cover-
age at a 0.1°× 0.1° resolution since June 2000. Compared
to other remote-sensing or reanalysis products, the GPM
IMERG has a considerably higher spatial and temporal res-
olution compared to its competitors. Also, the number of
distinct cells and, thus, spatial resolution are considerably
higher than the number of measurement stations in Jamaica.
One major drawback of the GPM IMERG, its short time
frame, does not apply to this study because all the ODPEM
events are fully captured in the observational period since
June 2000. Note that the quality of satellite rainfall data has
leapfrogged in the last decade: an inter-comparison of rain-
gauge, radar, and GPM IMERG for rainfall–runoff modeling
by Gilewski and Nawalany (2018) in a mountainous catch-

ment in Poland identified that radar and GPM IMERG out-
perform rain-gauge data. Tang et al. (2020) provide a com-
prehensive overview of different satellite precipitation and
reanalysis products, reporting good performance for GPM
IMERG, and they are continuously improving in more recent
versions.

3 Methodology

In this methodology section, we describe how to create IDF
curves from the GPM IMERG rainfall data via copula func-
tions. Furthermore, we present a flash flood classification of
extreme rainfall events by connecting the IDF curves with
confirmed flash flood events. The methodology is summa-
rized in Fig. 2. Core to the methodology are the event defi-
nition, copula selection and estimation, marginal distribution
selection and estimation, conditional copula sampling, and
the classification via odds ratio. Subsequently, these methods
are explained and their application is presented in the results
Sect. 4.

3.1 Event definition

The data on confirmed flash flood events provide location
and start date information but no sub-daily timing of rainfall
onset and its ending. We thus need to find and define rainfall
events that start before the flood (potentially lasting longer
than the reported date). We resort to the common inter-event
time definition (IETD) method to delimit the events (Ariff
et al., 2012; Bezak et al., 2016). The IETD refers to the
minimum duration without rain between consecutive rain-
fall events. An IETD of a few hours is typically selected for
floods, while for landslides the IETD is longer, i.e., up to
several days (Melillo et al., 2015). For confirmed events, the
event definition starts with a window of± 7 d around the date
given by the ODPEM or newspapers. Within that window,
the event with the maximum cumulative rainfall is regarded
as the flood-inducing rainfall event. Figure 3 illustrates the
procedure. The yearly maximum events are constructed the
same way, though for each cell each year is considered sep-
arately. Note that a minimum threshold of 0.1 mmh−1 for a
given observation to start an event is imposed to reduce the
number of events.

3.2 Conditional copula modeling

Informally, copulas can be described as “functions that join
or couple multivariate distribution functions to their one-
dimensional marginal distribution functions” (Nelsen, 2007).
More formally, given a two-dimensional (joint) distribution
function H with univariate margins F1 and F2, there exists,
by the first part of Sklar’s theorem, a two-dimensional cop-
ula C such that

H(x)= C(F1(x1),F2(x2)), x ∈ R2. (1)

Nat. Hazards Earth Syst. Sci., 24, 873–890, 2024 https://doi.org/10.5194/nhess-24-873-2024



D. Collalti et al.: Jamaica copula flood modeling 877

Figure 2. Flowchart illustrating the methodology. In gray are the original data inputs. Diamond squares are methods and procedures applied,
whereas regular squares are outcomes of said methods and procedures. In green are methods that involve choices outside regular statistical
testing such that they do not contribute to the analysis of uncertainty in Sect. 4.6, whereas methods in gold do. Blue squares are intermediary
outcomes, whereas purple squares are final outcomes that are subject to discussion in Sect. 5.

Figure 3. Illustration of the event definition in the case of a confirmed event with the reported date from ODPEM or newspapers in red. In the
time frame ± 7 d around this date, three separate events are defined given an IETD and a minimum threshold of 0.1 mmh−1. Three events
result, where the second event is the maximum event measured by cumulative rainfall and is considered the flood-inducing rainfall event.

The copula C is uniquely defined on
∏2
j=j ranFj and is

there given by

C(u)=H
(
F←1 (u1),F

←

2 (u2)
)
, u ∈

d∏
j=1

ranFj , (2)

where F← denotes the generalized inverse, which equals the
regular inverse F−1 for continuous and strictly increasing
distribution functions (dfs). By the definition of a cumula-
tive distribution function, ranFj ∈ (0,1) such that the copu-
las univariate margins are standard uniform U(0,1) (Hofert
et al., 2018). Three attributes follow: the copula function
(1) uniquely specifies the dependence for the whole distri-
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bution, (2) can be recovered from data on joint and marginal
distribution, and (3) imposes no constraint on the shape of
the dependence.

The conditional copula method has previously been used
to estimate IDF curves (Singh and Zhang, 2007; Ariff et al.,
2012; Bezak et al., 2016; Li et al., 2019). Let C be the
two-dimensional copula and let U ∼ C, u1 ∈ (0,1) and u2 ∈

[0,1], then

C2|1(u2|u1)= P(Uj ≤ uj |U1 = u1). (3)

If one fixes for some value of u1 ∈ (0,1), the conditional
copula function C2|1(u2|u1) is a distribution function on
[0,1] and can be used for conditional sampling. The evalua-
tion of C2|1(u2|u1), however, involves the evaluation of par-
tial derivatives instead of densities (Hofert et al., 2012, 2018).
The theoretical basis for the process is the inverse Rosen-
blatt transformation, also known as the conditional distribu-
tion method.

Consider that CU,V (u,v) is the copula function of interest
and let intensity I = i and durationD = d have marginal dis-
tribution functions V = FI (i) and U = FD(d). For a known
value of U = u, CV |U=u gives realizations of marginal
V . The corresponding value of u can be obtained by the
marginal distribution function. From u and v, the respec-
tive i and d can be recovered easily since d = F−1

D (u) and
i = F−1

I (v). The conditional copula function can be written
as

CV |U=u(v|U = u)=
∂

∂u
CU,V (u,v)

∣∣∣
U=u.

(4)

The conditional copula, which is a conditional bivariate
distribution, relates to the return period T as follows

CV |U=v(v|U = u)= 1−
1
T
. (5)

For a given value of u and a return period T , solving
Eqs. (4) and (5) simultaneously yields the corresponding v.
Via the marginal distribution function, the respective values
of i and d are recovered and represent a point on the IDF
curve for a return period T . For every return period T , many
values of u are chosen to get an approximately smooth IDF
curve. That process is repeated for other T to construct IDF
curves which are increasing in severity with T .

3.3 Two-sample approach

Rainfall events of interest are those that lead to flash floods.
However, a block maxima approach, partitioning the data
into yearly blocks, allows a direct relation with return pe-
riods and is thus often chosen (Ariff et al., 2012). The pro-
posed methodology uses information from block maxima as
well as confirmed flood events. There are m= 93 confirmed
flood events and, at these locations, n= 1120 yearly cell-
wise maxima. The yearly maximum events serve to estimate

the copula function and the marginal distributions of inten-
sity and duration for these extreme rainfall events. Condi-
tional sampling from the copula enables the construction of
IDF curves with T -year return periods. One can then derive
the IDF curve associated with a certain return period above
which the likelihood of flash flood occurrence is maximized.
For every return period the IDF curve is recovered and the
ratio R of confirmed flash flood events m against the num-
ber of yearly maximum rainfall events n that lies above that
curve is calculated:

R =

∑m
i=1I

(
di ≥

(
d̃|U = ui

))
∑n
j=1I

(
dj ≥

(
d̃|U = uj

)) , (6)

where (d̃|U = ui) is the estimated duration via conditional
copula sampling and marginal transformation d̃ = F−1

D (ũ).
The IDF curve with a return period associated with the high-
est ratio Rr:max is the one that separates the events from
non-events best. This constitutes a so-called critical layer
(d, i) ∈ L2

: 1−H((d, i)= P(D > d,I > i)= t , where all
combinations of i and d ∈ L2 have the same probability
1−H((d, i)= t (Salvadori et al., 2016). The critical region,
which corresponds to a flash flood classification, is defined
as L>t = {(i,d) ∈ L

2
: 1−H(i,d) < t} (De Michele et al.,

2013). Subsequently, the return period T > of an event in the
critical region is defined by the inverse probability of falling
into the critical region (Zscheischler et al., 2017):

T > =
µ

P((D,I) ∈ L>t )
, (7)

where µ denotes the average time unit, which is 1 year in the
case of yearly maxima.

3.4 Candidate copulas

The selection of appropriate copula is carried out in two
steps. First, a set of candidate copulas is defined. Second,
the candidate copula is compared on the basis of fit, for both
the event and the yearly maxima data. The first restriction on
candidate copulas is that a conditional sampling algorithm
exists. This is the case for the families of Archimedean and
elliptical copulas (Hofert et al., 2018). The literature on land-
slides and flash flood IDF curves has further established the
negative relation between an event’s duration and its inten-
sity, which is the second restriction on candidates (Aleotti,
2004; Piciullo et al., 2017). Table 1 shows the copulas for
which conditional sampling algorithms exist and some of
their properties. The two restrictions leave one with three
potential copula classes, normal, Frank, and t copula. Note
that these copulas are all radially symmetric and exchange-
able. Geometrically, radial symmetry is the symmetry of the
density with respect to the point 1/2= (1/2, . . .,1/2). Ex-
changeability is the symmetry of the density with respect to
the main diagonal. Given a negative dependence, a copula

Nat. Hazards Earth Syst. Sci., 24, 873–890, 2024 https://doi.org/10.5194/nhess-24-873-2024
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Table 1. Candidate copula families.

Name Attainable Radial Exchange Negative
dependence symmetry ability dependence

Gaussian (−1,1) X X X
tv (−1,1) X X X
AMH [0, 1/3) X
C [0, 1) X
F (−1, 1) X X X
GH [0, 1) X X
J [0, 1) X X

Overview of candidate copula families with respect to their attributes.

that is not radial symmetric is one whose lower tail depen-
dence is different from its upper tail dependence, whereas
a copula that is not exchangeable is one whose dependence
changes with the order of the marginals. The best candidate
copula is selected on the basis of the cross-validation cop-
ula criterion (CIC) by Grønneberg and Hjort (2014), which
is an Akaike information criterion (AIC)-like criterion on
a maximum-pseudo-likelihood estimate (MPLE) of semi-
parametrically (i.e., with non-parametric estimated margins)
estimated copula. The methodology is implemented in the
R package “copula”, with which all the subsequent copula
modeling is carried out (Kojadinovic and Yan, 2010; Hofert
et al., 2018).

3.5 Selection of marginals

The IDF curve construction via conditional copula in
Sect. 3.2 requires the estimation of marginals for dura-
tion D and intensity I . Candidate marginal distributions are
the Weibull, gamma, lognormal, and generalized extreme
value (GEV) distributions and are all estimated via maxi-
mum likelihood and assessed by AIC. The empirical prob-
ability density function is also inspected graphically against
the marginal distributions’ estimated probability density to
assert its fit.

4 Results

4.1 Event definition

The event definition in time requires an appropriate IETD.
Values of IETD between 4 and 24 h are considered. Graphi-
cal assessment of mean event intensity and duration revealed
that an IETD of 12 h best delimits the rainfall events. See Ap-
pendix Sect. A for a discussion and graphical examples for
various IETDs. Figure 4 shows the locations of confirmed
flash flood events in Jamaica and the average intensity, dura-
tion, and total rainfall of the yearly maximum events. Av-
erage intensity is highest inland and to the west, but it is
fairly evenly distributed. Average total rainfall is highest at

the eastern shore north of the Blue Mountains, with a second
agglomeration of high total rainfall cells in the west. Dura-
tion exhibits a similar pattern to total rainfall, with the longest
events in the west. Since the confirmed flash flood events are
evenly distributed across the island, variation in local condi-
tions is expected to be captured well. Table A1 in the Ap-
pendix further provides summary statistics for both yearly
maximum and confirmed flash flood events.

4.2 Copula selection

The shape of dependence can be assessed via pseudo-
observations. Pseudo-observations are obtained by first es-
timating the empirical distribution functions Fn(n,j) for
j ∈ (I,D),

Fn,j =
1

n+ 1

n∑
i=1

1(Xi,j < x), x ∈ R, (8)

where 1(·) is the indicator function. These estimated margins
can then be used to form the sample:

Ui,n = (Fn,D(Xi,D),Fn,I (Xi,I )), i ∈ {1, . . .,n}. (9)

Figure 5 displays the pseudo-observations and demon-
strates a strong negative dependence in both samples. This
limits the set of potential copulas to the normal, Frank, and
t copula. Note that these copulas are all radially symmetric
and exchangeable.

Estimates of the copula information criterion (CIC) are
shown in Table 2. Selecting the Frank copula for the yearly
maximum events leads to a higher CIC than the normal or t
copula. For the confirmed events, selecting the Frank copula
leads to a lower CIC than the normal or t copula.

Figure 6 displays pseudo-observations for both samples as
well as a random sample of pseudo-observation under Frank
and normal copula. The sample of confirmed flash floods is
too small to draw conclusive evidence regarding the optimal
copula. There is also no clear visual indication around the
locus of points for the Frank copula over the normal copula

https://doi.org/10.5194/nhess-24-873-2024 Nat. Hazards Earth Syst. Sci., 24, 873–890, 2024
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Figure 4. (a) Location of the confirmed flash flood events, (b) cell-wise mean intensity of locations’ maximum events, (c) cell-wise mean
total rainfall of locations’ maximum events, and (d) cell-wise mean duration of locations’ maximum events.

Figure 5. (a) Pseudo-observation of the yearly maximum rainfall events (YMEs) and (b) of the confirmed flash flood events (FFEs). Ties in
the duration variable due to the measurement scale are randomly split.

Table 2. Cross-validation copula criterion.

Normal copula Frank copula t Copula

Maximum events 513.3 551.4 521.3
Confirmed events 15.92 12.02 15.93

Cross-validation copula criterion (CIC) by Grønneberg and Hjort (2014) for both data
samples. The t copula assumes 10= v degrees of freedom.

or vice versa. However, the normal copula exhibits tail de-
pendence similar to the data, while the Frank copula is tail
quadrant independent (Joe, 2014).

In summary, the normal copula is better suited for the data
and thus chosen for the analysis. It is more appropriate for
yearly maximum events, which are the data on which the
IDF curves are generated, as outlined in Sect. 3.3 concerning
the two-sample approach. Additionally, the normal copula is
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Figure 6. (a) Random sample (n= 1120) of pseudo-observation of the yearly maximum rainfall events (YMEs) under the assumption of
Frank copula, (b) under the assumption of normal copula, and (c) the true pseudo-observation. (d) Random sample (n= 93) of pseudo-
observation of the confirmed flash flood events (FFEs) under the assumption of Frank copula, (e) under the assumption of normal copula,
and (f) the true pseudo-observation.

suitable for the confirmed events, as the CIC and graphical
evidence show.

4.3 Estimation of marginals

Table 3 reports the Akaike information criterion for both
samples, where the parametric distributions are fitted via
maximum likelihood estimation (MLE) to the marginals.
For both samples’ intensity, the generalized extreme value
(GEV) distribution results in the lowest information loss.
Similarly, for the duration, the Weibull distribution yields,
in both instances, the lowest AIC.

Figure 7 compares the estimated distributions and the
empirical probability density. In all cases the two match
well. The confirmed flood events are on average slightly
longer (11.4 h versus 9 h) and less intense (5.2 mmh−1 versus
9.9 mmh−1) compared to the yearly maximum events. No-
tably, the flood events are not as smoothly distributed due to
the smaller sample size. Both samples yield similar distribu-
tions and agree on the shape. Subsequent conditional copula
modeling focuses on the more precisely estimated distribu-
tions from the large sample of yearly maximum events.

Table 3. Akaike information criterion.

Yearly maximum events

Weibull Gamma Lognormal GEV

Intensity 7374.2 7327.5 7059.3 7029.1
Duration 7053.8 7061.3 7181.4 7196.5

Flash flood events

Weibull Gamma Lognormal GEV

Intensity 493.7 487.8 447.5 428.8
Duration 632.7 634.6 650.2 648.3

Akaike information criterion (AIC) for both samples. A parametric
distribution was fitted via MLE to the marginals, intensity, and duration.

4.4 Conditional copula IDF curves

Given the conditional copula modeling presented in Sect. 3.2
and the estimates for the GEV distribution of intensity, the
Weibull distribution of duration, and the normal copula for
dependence, the following procedure can be employed simi-
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Figure 7. Comparison of estimated probability density function for (a) intensity of yearly maximum events (YMEs), (b) duration of yearly
maximum events, (c) intensity of flash flood events, and (d) duration of flash flood events (FFEs).

larly from a conditional copula. Let’s create a vector of quan-
tiles u ∈ [0,1] and set a return period T relating to the condi-
tional copula as in Eq. (5),CV |U=u(v|U = u)= 1− 1

T
, where

C(·) is the normal copula function estimated in Sect. 4.2.
Then for every quantile of u and for every return period, the
corresponding (conditional) quantile of v results, thus giv-
ing a triplet of (uq ,vq ,T ) for any quantile q of u and re-
turn period T . Via the inverse distribution transformations
d = F−1

D (uq) and i = F−1
I (vq) and the estimated marginal

distributions from Sect. 4.3, that triplet becomes (d, i,T ).
Connecting all points in the (d, i) space for some T then
gives us an IDF curve for return period T from conditional
copula modeling.

IDF curves corresponding to return periods between 2 and
40 years are shown in Fig. 8. The curves are all convex, such
that shorter events have a disproportionately higher inten-
sity. Visually, the choice of marginals has little impact on
the IDF curves. Higher return periods shift the IDF curve

outwards to higher intensities for all durations. Interestingly,
convexity decreases with higher return periods. Even though
longer return periods might be of interest, we are cautious
that long return periods might not be appropriate given the
available data. Coles et al. (2001) for instance argue that in-
creasing extrapolation to upper quantiles of the distribution
and longer return periods is increasingly at risk of unverifi-
able assumptions and uncertainty. Therefore, the maximum
return period here of 40 years is twice the length of the data
used in model estimation, which is more than sufficient for
the extreme rainfall event classification.

4.5 Best IDF curve

IDF curves generated with the normal copula, a generalized
extreme value distribution for intensity and a Weibull distri-
bution for duration, reliably quantify the joint severity of an
event by linking a return period to it. The next step is to find
the IDF curve above which the probability of a flood event
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Figure 8. Intensity–duration curves for frequencies corresponding to a return period of 2, 5, 10, 20, and 40 years. Panel (a) shows these IDF
curves for the normal copula and marginals estimated from the yearly maximum events (YMEs), in logs in panel (b), and panel (c) shows
the normal copula from YMEs and marginals from flash flood events (FFEs), in logs in panel (d).

is maximized. The highest odds ratio (0.66) is reached with
a return period of 2 years and 2 months. Rainfall events that
potentially trigger flash floods are thus expected to be at least
as severe as a 2.17-year return period event.6

4.6 Uncertainty

Each method and procedure in the methodology comes with
uncertainty. In the case of the green-labeled procedure in
Fig. 2, this uncertainty is in terms of modeling choice, i.e.,
which approach to event definition or functional form of
copula and marginal distribution is appropriate. Uncertainty
from such modeling choices is difficult to quantify since

6This threshold is naturally higher than the simple empirical
analog of the 93 confirmed events in Jamaica during the 18-year
period because the geographical resolution is higher: looking at
smaller-scale areas, each of these areas’ flood probability has to be
lower than that of the whole island.

there is no clear framework to define appropriate alternative
hypotheses. In other words, the functions that have to be eval-
uated are not necessarily nested models that can be compared
directly with a statistical test. In contrast, the gold-labeled
methods in Fig. 2 by design give measures of uncertainty or
are nested to this uncertainty. Therefore, the uncertainty of
the copula estimation, marginal distribution estimation, con-
ditional copula sampling, and odds ratio classification can be
assessed, for instance, with bootstrapping.

Bootstrapping is a method commonly used to create confi-
dence intervals for complex problems related to other resam-
pling methods such as cross-validation (Hesterberg, 2011).
The approach has been employed to quantify the uncertainty
of IDF curves (Sane et al., 2018). In our case, we use the stan-
dard bootstrap with replacement but randomly draw a sam-
ple of both the confirmed events and the yearly maximum
rainfall events from the original data. We repeat that process
many times and calculate the values of interest for the IDF
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Figure 9. IDF curves with a return period of (a) 2 years, (b) 10 years, (c) 20 years, and (d) 40 years with a 99 % confidence band from
bootstrapping over the estimation of marginals and the copula function.

curve and the ratio classification each time. This yields a dis-
tribution of these that mimics the real sampling procedure
in the data. We repeat that process 1000 times and calcu-
late confidence intervals as the bootstrapped quantiles of the
quantities of interest.

Figure 9 shows IDF curves for return periods of 2, 10, 20,
and 40 years with a 99 % confidence band from bootstrap-
ping. There is very little uncertainty coming from the estima-
tion of distribution and copula. We suspect that there could
be more uncertainty from the modeling choices, albeit these
choices are herein not discretionary but firmly grounded in
statistical theory. Figure 10 shows the uncertainty of the re-
turn period classification ratio and the classification of yearly
maximum rainfall events with the optimal IDF curve. The
uncertainty is much larger when classifying the events com-
pared to the IDF curves. Not only is the uncertainty from
the estimation of distribution and copula relevant, but many
events are close to the optimal IDF curve itself and thus
within the range of estimation uncertainty. The sampling of
confirmed and maximum rainfall events also directly affects
the classification ratio by changing the composition of events
that are evaluated.

5 Discussion

It is insightful to compare the IDF curves from this study with
those otherwise obtained for Jamaica. Burgess et al. (2015)
provide Jamaica’s most recent IDF curves using long-time-
series data from two stations in Jamaica and extending ex-
isting annual maximum records back to 1895. With a return
period of 5 years and a duration of 12 h, they estimate intensi-
ties of around 7.2–11.4 mmh−1, depending on the configura-

tion. For a duration of 2 h and again a return period of 5 years,
intensities are between 32–33 mmh−1. For a return period of
5 years, the results from the current study suggest an intensity
of 7.14 mmh−1 for 10 h and 22.8 mmh−1 for 3 h. The corre-
sponding IDF curves are thus in a similar range but are more
strongly convex than those in Burgess et al. (2015), where
dependence is not explicitly addressed. This might be caused
by the choice of the normal copula, which is well suited to
depict convex dependence. It might also be caused by the
type of data input in that Burgess et al. (2015) use data from
stations in the two largest cities in Jamaica, namely Kingston
and Montego Bay, spanning back to 1895. In contrast, the
remote-sensing data employed in the current study cover the
whole island but only since 2000. Given the large difference
in the investigated time period, climatic factors likely impact
the results. Considering the spatial rainfall climate in Fig. 1,
there is a strong variation across the islands for different me-
teorological scales that changes with the duration of events
in the satellite data. It is arguably advantageous for some ap-
plications to represent the island on average instead of in two
specific locations, whereas the longer time series in Burgess
et al. (2015) are preferred in other applications.

Another kind of comparison can be made concerning the
marginal distributions and studies that employ extreme value
modeling for flood risk prediction. The intensity of con-
firmed flash flood events and extreme rainfall events in Ja-
maica is GEV distributed. The shape parameter around 0.59
implies that intensity is Fréchet extreme value distributed
and has a lower limit. The duration of confirmed flash flood
events and extreme rainfall events in Jamaica is Weibull dis-
tributed and has an upper limit. The lower limit of intensity
and upper limit of duration are consistent with the IETD def-
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Figure 10. Panel (a) shows the ratio R of confirmed flood events versus yearly maximum rainfall events for different return periods with a
95 % confidence band from bootstrapping over the estimation of marginals and the copula function. Panel (b) shows the IDF curve with a
return period of 2.17 years and how this separates the yearly maximum rainfall events.

inition, which forces events to be relatively short and have a
minimum intensity to be considered. Several studies also find
evidence for Fréchet-distributed intensity when constructing
IDF curves with extreme value analysis, though the shape
of the distribution appears to be highly case-sensitive (Sane
et al., 2018; Bonaccorso et al., 2020; Yeo et al., 2021).

The quantification of extreme rainfall hazards through the
IDF curve classification has direct applications for policy-
makers. One may first consider the case of the CCRIF XSR
parametric insurance against excess rainfall that is based
on specific rainfall thresholds for payouts. The most recent
version, XSR 2.5, utilizes separate exposure, vulnerability,
and hazard modules for each member. For the Caribbean,
the module is triggered by rainfall events that exceed some
country-specific average intensity threshold for 12 h (short
events) or 48 h (long events). These country-specific thresh-
olds are optimized to increase the likelihood of detecting se-
vere events while not capturing false positives. The results
from the current study aim at a threshold identification simi-
lar to the XSR but differ in methodology. However, the flash
flood identification from conditional copula modeling could
be coupled with a module of exposure and a specific vulner-
ability function. The IDF curve can also provide thresholds
for events shorter than 12 h. For instance, a 6 h long rainfall
event with an average intensity above 8.4 mmh−1 is poten-
tially flash flood inducing. Such an integrated model based
on the IDF curves would be an alternative verification to the
CCRIF XSR and reduce model uncertainty.

The methodology proposed here could also be employed
for hazard warning services. The Climate Risk and Early
Warning Systems (CREWS) Caribbean project aims at
strengthening such services. One of the three project compo-
nents is the institutional strengthening and capacity building
of hydro-meteorological services and early warning systems.
The simple decision rule within the intensity duration space
derived in the current study could be adapted for such pur-
poses. More precisely, given a local weather forecast for the
next day and corresponding uncertainty, the risk of a poten-
tial flash flood event can be deduced. After the initial pa-
rameterization, a direct implementation into the forecasting

routine comes at virtually no cost. Again, even if there exist
other systems, introducing another model based on a differ-
ent methodology can greatly reduce model uncertainty.

It must be pointed out that the proposed methodology suf-
fers from some shortcomings. The focus on rainfall events as
measured at a certain location ignores general meteorological
conditions as well as conditions on the ground. Additional in-
formation such as antecedent rainfall and soil moisture, soil
type, or slope gradients can be employed to get a more pre-
cise decision rule. Likely, these factors play a crucial role in
the actual development of a hazard given a specific rainfall
event. The current methodology with a bivariate copula at
its core is not directly suited for additional variables. While
trivariate and higher-dimension copulas do exist, they are
much less understood. Trivariate copulas also impose some
limits on the attainable negative dependence. Furthermore,
adding another variable to the copula requires a dispropor-
tionately larger sample, where the sample density decreases
exponentially with the number of dimensions. One should
note that several of these shortcomings such as the sample
density apply to other methodologies as well. Another poten-
tially more fruitful route might be to consider separate copula
functions for different topography classes or meteorological
conditions instead of a unified model that explicitly accounts
for these interdependencies.

The procedure also omits the role of tropical cyclones
(TCs). It has long been recognized that in the Caribbean
many instances of extreme rainfall and consequential flood-
ing are due to TCs (Laing, 2004). Ideally, a classifica-
tion scheme would take into account synoptic-scale weather
events. Suppose the proposed classification scheme for flash
flood incidents will be used to estimate the effect of extreme
rainfall on the economy or for insurance schemes. In that
case, evidence is necessary to distinguish it from TCs (Cza-
jkowski et al., 2017). While the current study did verify via
newspaper articles that the flash flood incidents are largely
non-TC events, additional care is necessary for applications.
For instance, Collalti and Strobl (2022) study the economic
impacts of flooding during tropical storms in Jamaica and
find that only a minor number of heavy rainfall events occur
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during tropical storms of hurricane strength compared to the
number of flash flood incidents discussed in this study.

Still, the analysis has to be geographically interpreted in
terms of the whole island of Jamaica since the cell-wise an-
nual maxima are likely not independent of each other due
to weather systems such as TCs affecting more than one cell.
This type of dependence due to the simultaneous occurrences
of extreme events at multiple stations is also known as spatial
coherence or storm dependence and can lead to an underes-
timation of the risks associated with extreme precipitation
at each specific location (Zhang et al., 2022). However, it
is particularly challenging to model such a dependence ade-
quately in a statistical analysis. This is the main reason why
we refrain from making statements concerning a single lo-
cation which would require the explicit modeling of depen-
dence, for instance, via single-site conditioning (Wadsworth
and Tawn, 2022). In other words, by not exploiting the tim-
ing or location relative to other observations in the data of
yearly maximum events and thus focusing the analysis on
the island level, the results are unbiased concerning the spa-
tial dependence of single observations but do not provide any
location-specific insights.

Another shortcoming in the generalization of the method-
ology concerns climate change and the stationarity of the
purported relationship. There is a strong consensus that cli-
mate change will influence extreme precipitation and conse-
quentially flood risk in many parts of the world, including
the Caribbean (IPCC, 2012, 2023). One possibility would be
to incorporate non-stationarity in time in the marginal ex-
treme value distributions (Sam et al., 2023). This could be
extended to the copula function, as Yin et al. (2018) demon-
strate. However, this approach is not feasible in the current
application due to the, in climatic terms, short time series of
the data. Most climatic variation in a 20-year time series is
likely internal climate oscillation like ENSO (Bedoya-Soto
et al., 2019; Cai et al., 2020). There could, however, be an al-
ternative route to tackle climate change in settings where the
data length is short in the form of (external) climate change
allowance (Kay et al., 2021). This would entail resampling
and adjusting the satellite precipitation data by a climate
change allowance factor derived from other studies. Running
the methodology of conditional copula modeling with these
new data, one could explicitly model the effect of climate
change on flood risk and classification in a comparison.

6 Conclusions

This study uses 93 confirmed flash flood events in Jamaica
from 2001 to 2018 to estimate intensity–duration–frequency
(IDF) curves via conditional copula sampling. Rainfall in-
formation of flash flood events is taken from remote-sensing
data, and additional data on location-specific yearly max-
imum rainfall events were constructed. This considerably
larger sample of statistically similar events allows for higher

robustness in the estimation. It further enables one to find
an IDF curve threshold above which flash flood events be-
come likely. This threshold corresponds to a return period
of 2 1

6 years. A comparison with IDF curves for Jamaica in
Burgess et al. (2015) yields similar results in terms of ab-
solute level, but these are less convex concerning extremely
intense or long events. The simple nature of connecting the
copula method for IDF curves with a classification for flash
floods potentially opens up many applications in paramet-
ric insurance programs, regional risk mapping, and hazard
warning systems. The current study abstracts from event-
determining conditions other than local rainfall intensity and
duration. Future research should, therefore, include other fac-
tors, such as soil type and terrain ruggedness in the condi-
tional copula modeling, as well as incorporate synoptic-scale
meteorological conditions and climate change scenarios.

Appendix A: Event definition

Depending on the IETD, the statistical properties of the
events change. Values of IETD between 4 and 24 h are con-
sidered. Figure A1 shows how the average intensity and du-
ration changes for the flash flood event data with different
values of the IETD. There is a relatively sudden drop in mean
intensity for IETDs above 21 h. Also, the mean duration in-
creases one to one up until an IETD of 12 h, after which the
slope becomes flatter. Both indicate that the IETD above 12
and 21 h results in imprecisely delimited events with regard
to duration and intensity, respectively. Figure A2 shows the
probability density function of duration and intensity for the
confirmed flash flood event data (green) and maximum rain-
fall events (blue). In order to apply the two-sample approach,
they should follow the same marginal distribution. The max-
imum rainfall events are more intense but shorter compared
to the confirmed flash flood events. The resemblance between
duration increases with higher IETD while there is no clear
pattern for intensity. In conclusion, an IETD of 12 h is best
suitable for the data at hand. Note that in Sect. 4.3, where
marginals are estimated for the conditional copula modeling,
Kolmogorov–Smirnov tests indicate that the marginal distri-
butions of the maximum rainfall event data are suitable for
the smaller-confirmed-event data as well.
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Figure A1. Mean event intensity and duration for different values of IETD.

Figure A2. Probability density plots for duration and intensity for an IETD of 6, 12, and 24 h.
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Table A1. Summary statistics.

Maximum yearly events

N Mean SD Min Max

Total rainfall 1120 47.542 24.522 6.705 148.485
Event duration 1120 9.031 6.811 0.500 36.000
Rainfall intensity 1120 9.927 12.089 0.905 120.000

Total rainfall 93 73.677 53.283 12.120 240.100
Event duration 93 11.419 8.325 17.000 32.000
Rainfall intensity 93 5.169 7.271 0.962 54.760

Summary table of events with IETD of 12 h for all locations with a confirmed flash flood
event.

Code and data availability. Shapefiles of all flood events in the
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